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Abstract. The dielectric function ε of II-VI ternaries is described by fitting experimental results at room
temperature to three different models. For each individual composition, ε variations with photon energy E
are well reproduced with only four harmonic oscillators. The model dielectric function (MDF) of Adachi
which is linked to the band structure does not give better results in the description of ε(E) and its
derivatives are not correctly reproduced. The MDF model of Kim et al. lead to good descriptions both of
ε(E) and its derivatives in all the spectral range considered, and it appears the most powerful model at
the present time. We have not fully succeeded in building a composition dependent model for these bulk
semiconductors. The analysis of this failure reveals that, though the materials appear good, their unknown
densities of defects appear uncorrelated with the composition of the ternaries. These non controlled defect
densities lead mainly to erratic deviations of the broadenings near critical transitions. Though relatively
small these erratic deviations on the broadenings prevent the set up of a precise composition dependent
model. ε(E) variations are also calculated below the fundamental gap in HgZnTe and CdZnTe. Zero
frequency (ε∞) values are compared with known experimental results. The large variation of ε∞ with
composition x in Hg1−xZnxTe prevents the revealing of the part of ε due to the defects. In return, the
effect of the defects on the crystal polarizability is evidenced in Cd1−xZnxTe where the variation of ε∞
with x is small. This leads us to propose that the most probable values of ε∞ are near 7.1 for CdTe and
6.75 for ZnTe.

PACS. 78.20.-e Optical properties of bulk materials and thin films – 71.22.+i Electronic structure of liquid
metals and semiconductors and their alloys – 77.22.Ch Permittivity (dielectric function)

1 Introduction

Modeling the optical dielectric function is of paramount
importance for the design of optoelectronic devices [1].
The dielectric function of a material ε(E) = εr(E) +
iεi(E), where E is the photon energy, can be measured
using spectroscopic ellipsometry. These measurements are
usually performed at room temperature for semiconduc-
tors. ε(E) has been measured at low temperatures only
for a limited number of semiconductors such as Si [2],
Ge, GaAs [3], InSb or InP [4]. For ternary and quater-
nary compounds, ε(E) is only known for a limited num-
ber of compositions. In this paper ε(E) will designate ex-
perimental determinations of the dielectric function and
L(E) = Lr(E) + iLi(E) its values deduced from mod-
els. Several linear schemes have been proposed to evaluate
L(E) for any composition. They are based on purely math-
ematical grounds [5,6] or use the effective medium approx-
imation [7]. All these schemes need the tabulated values
of ε(E) for each composition for which ε(E) is known.
As these methods are not based on physical grounds it is
not possible to predict L(E) when a physical parameter,
like temperature, is changed. A more physical approach

expresses L(E) with a finite sum of contributions of har-
monic oscillators (HO). For instance, the room temper-
ature ε(E) of GaAs is fairly well described with seven
oscillators [8]. The HO description is commonly used to
describe ε(E) of layers present at sample surfaces [9] or in-
side heterostructures [10]. The HO do not express the pe-
culiarities of the optical response of a solid which appear
at critical transitions. So the energies of the oscillators
are not related to these transitions [11] and the different
derivatives of L(E), so expressed, cannot reproduce those
deduced from experimental data. The HO cannot describe
correctly ε(E) around the fundamental gap where εi(E)
has a sharp cut-off due to the strongly varying joint den-
sity of states.

Several model dielectric functions (MDF) have been
proposed. Adachi describes L(E) starting from the ex-
pression of Li(E) for parabolic bands above a critical
point. Lr(E) is then deduced analytically from a Kramers-
Kronig inversion [12]. After such a calculation, the ef-
fect of the interactions with excitations in the crystal
which broaden the transitions is phenomenologically in-
troduced replacing E by E+ iΓ where Γ is a phenomeno-
logical broadening parameter associated with each critical
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transition [13,14]. This model allows a fairly good descrip-
tion of ε(E) but only if strong exciton contributions at
critical points are introduced [15] or also large contribu-
tions from indirect transitions [16]. Recently, Kim et al.
presented a still more elaborate MDF, though the expres-
sions for L(E) remain analytical [17]. This model rests
on interpolation schemes, between critical points, of the
parameters describing L(E) around each of the critical
transitions. The interpolations are done with polynomials
limited to second order to obtain analytical expressions for
the different parts of L(E). All the necessary parameters
entering these expressions are adjusted to obtain the best
fit of ε(E) but also of its two first derivatives. To date this
model appears the most elaborate among those related to
the physics governing L(E). Owing to its numerous pa-
rameters it is able to model with great precision ε(E) of
binary compounds [17,18]. ε(E) of Ga1−xAlxAs has also
been modelled by the same authors [19] using ε(E) data
for 8 selected compositions x and GaAs obtained mainly
on layers which where grown by liquid phase epitaxy [20]
in the same laboratory. The variations, with composition,
of the parameters entering the expressions of L(E) for
a given x are then fitted with polynomials of cubic or-
der whose coefficients are adjusted to give the best fit of
L(E) to ε(E) data for all the selected compositions. L(E)
of GaAlAs can be then calculated, throughout the whole
composition range, from a table of 84 coefficients inde-
pendent of x. L(E) reproduces fairly well ε(E) data for
x < 0.8.

This same model has been used, more recently, by
Kamlet and Therry [21] for the case of InGaAsP quater-
naries lattice matched to InP. Good results are obtained
for each composition after fits to 58 parameters. However,
the authors point out the paramount importance of the
precise determination of the energies Ej and the broad-
ening parameter Γj associated with each critical transi-
tion j. In a first step Ej and Γj are fitted with quadratic
polynomials on composition. Then, the whole of the data
is fitted anew using 176 parameters, all independent of
composition. However, among all these parameters only
fitted values of Ej are given for some selected composi-
tions. The ability of L(E) to describe the dielectric func-
tion is checked by determining the composition of some
quaternaries used to evaluate L(E). The study of a great
number of examples show that the error on composition
can reach 1%.

In this paper we present an attempt to model ε(E) of
the II-VI ternaries Hg1−xZnxTe (MZTx) and Cd1−xZnxTe
(CZTx) with a discussion of the three models considered.
We use the model of Kim et al. [17] changing slightly
the paths of integration. Experimental data have been
obtained in the same laboratory on good bulk samples.
The paper is organized as follows: in Section 2 we recall
shortly how experimental data have been acquired and the
basis of the L(E) description using different models. The
third part focuses essentially on the fits with the model
of Kim et al. [17] which is used to express L(E) for each
composition in HgZnTe and CdZnTe. Section 4 discusses
the attempt to obtain a composition dependent model in
both II-VI ternaries considered. Some comments on the

potential accuracy of this modeling are presented as re-
gard to the actual experimental situation. Section 5 gives
briefly some comparisons with known results in the trans-
parent domain of these semiconductors. The paper ends
with the conclusion.

2 Experimental data and dielectric function
models

ε(E) has been deduced from ellipsometric measurements
at room temperature between 0.75 and 5.6 eV. They were
performed on good quality crystals grown by the traveling
heater method. Experimental details are given with ε(E)
variations in reference [22] for MZT and in reference [23]
for CZT. In these reports, ε(E) is analyzed with the single
critical point (SCP) model. The comparison between L(E)
given by the SCP model and ε(E) is performed on their
third derivatives [22,23]. The experimental acquisition of
the optical data is equivalent to a mean of more than
10 measurements [22]. The noise in the data is then low
enough to calculate the different derivatives and to obtain
excellent fits of third derivatives of ε(E) with those of
L(E) given by the SCP model. Only the fit around the
weak E0 + ∆0 transition is not so good. The different
critical transitions have been discussed in [22] and [23]. E1

and E1 +∆1 transitions can be equally well described by
excitonic and or 2D transitions in both ternaries [22,23].
The three models used to describe ε(E) are now discussed.
Their basis is very briefly recalled; the details can be found
in the references cited for each model.

In the first simple model considered L(E) is expressed
with a finite sum of harmonic oscillator (HO) contribu-
tions and written LHO(E):

LHO(E) = LrHO(E) + iLiHO(E)

= ε1 +
N∑
j=1

Aj

[
1

E −Ej + iΓj
−

1

E +Ej + iΓj

]

where Ej , Γj and Aj are respectively the energy, the
broadening parameter, and the oscillator strength of os-
cillator j, ε1 takes into account the effect of high energy
transitions. ε(E) is very well described in a large energy
domain with only N = 4. This can be seen in Figure 1
where LHO(E) and ε(E) are drawn for MZT 0.484. The
corresponding Ej values are reported in Table 1 where
they are placed arbitrarily in the same columns as those
of real optical transitions for the sake of simplicity. In this
fit 16 parameters have been adjusted. εr(E) and εi(E)
are not correctly reproduced in the vicinity of the fun-
damental gap which is of crucial importance. Below the
band gap, the absorption LiHO(E) is too high, LrHO(E)
too low and its variations do not follow εr(E) closer than
10%. The Ej are not related to the band structure so
that LHO(E) derivatives should not be compared to those
of ε(E).
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Table 1. Values of energies Ej, broadening parameters Γj giving a good fit of the dielectric function of MZT 0.484 with the
oscillator model and the model of Adachi. The values deduced from the SCP model are recalled. Harmonic oscillator energies
are arbitrarily placed in the table.

Model E0 E0 +∆0 E1 E1 +∆1 E2 ΓE0 ΓE0+∆0 ΓE1 ΓE1+∆1 ΓE2

(eV) (eV) (eV) (eV) (eV) (meV) (meV) (meV) (meV) (meV)

HO – 2.546 3.135 4.691 6.818 – 227 711 913 4 012
MDF 0.890 – 2.543 2.961 4.871 30 – 355 101 317
SCP 0.850 1.720 2.557 3.239 4.678 58 47 139 193 165

Table 2. Critical transitions considered, their type and their connection with other critical points following the same bands in
the Brillouin zone in HgZnTe and CdZnTe.

Critical Point Transition Type (3D) Connexion to other Critical

E0(Γ ) (Γ v8 → Γ c6 ) M0 E1, E1 +∆1, E2

E0(Γ ) +∆0(Γ ) (Γ v7 → Γ c6 ) M0 Ee
E1(Λ) (Lv4,5 → Lc6) M1 E2

E1(Λ) +∆1(Λ) (Lv6 → Lc6) M1 Ee
E2(X) (Xv

7 → Xc
6) M1 Ee

Fig. 1. Dielectric function of MZT 0.484 versus photon energy
E: experimental data (�) εr, (+) εi, (—–) description with 4
harmonic oscillators whose parameters are given in Table 1.

The MDF model is a great improvement in the mod-
eling of ε(E) as it links L(E) to electronic transitions be-
tween bands. We will restrict discussion to the model pro-
posed by Adachi [12]. The types of transitions correspond-
ing to critical points are recalled in Table 2 as deduced
from the SCP analysis [22,23]. The different necessary ex-
pressions are [12]:

LM0(Ej) = AjE
−3/2
j χ−2

j

×
[
2− (1 + χj)

1/2 − (1− χj)
1/2

H (1− χj)
]

for a 3D M0 transition at Ej .

LM1(Ej) = −Bjχ
−2
j ln(1− χj)

for a 3D M1 transition. In both expressions χj = (E +
iΓj)/Ej , Aj and Bj are oscillator strengths, Γj is the

broadening parameter added after the analytic integra-
tion as explained in the introduction, and H is the Heavi-
side function. Strong excitonic contributions must be also
added for the ε(E) modeling. The usual expression of this
type of contribution is:

Lex(Ej) =
∞∑
n−1

1

(2n− 1)
3

 Cj

Ej −
Ex

(2n− 1)2
−E − iΓex



where Ex is the binding energy of the exciton and Γex the
corresponding broadening parameter. In practice this sum
is limited to n = 3, and then L(E) reads:

LMDF (E) = ε2 + LM0(E0) + LM0(E0 +∆0) + LM1(E1)

+ Lex(E1) + LM1(E1 +∆1)

+ Lex(E1 +∆1) + LM1(E2)

as only five transitions have been found in MZT and
CZT for the range of photon energies considered [22,23]
(cf. Tab. 2). ε2 describes the contribution of high energy
transitions. These transitions are labeled with their usual
name which are recalled in Table 2. ε(E) can be well repro-
duced by this LMDF (E) at low energies when exciton con-
tributions are ignored at E0 and E0 +∆0, though its im-
portance increases with the fundamental gap E0 [22,23].
Although the fit is performed simultaneously on εr(E) and
εi(E) data, Figure 2 shows only the comparison of differ-
ent choices in the modeling procedure, only on εi(E). As
already noticed, L(E) cannot be adjusted to ε(E) around
E1 and E1 +∆1 transitions if excitonic contributions are
not taken into account, even if all the parameters are taken
free. When excitonic contributions are taken into account
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Fig. 2. Same εi(E) as in Figure 1 for MZT 0.484: (+) exper-
imental data, (- - -) best fit without excitonic contributions,
(– –) fit after the introduction of excitonic contributions at E1

and E1 +∆1 but taking the energies and broadenings deduced
from the SCP model and given in Table 1. (—–) Fit with ex-
citonic contributions and taking all the parameters free. The
four lower curves give the different contributions after the last
fit. (—◦—) Excitonic contribution at E1 and E1+∆1; (— - —)
Other uncorrelated transitions.

ε(E) is not correctly reproduced if the energies and broad-
ening parameters are fixed at their values deduced from
the SCP analysis [22,23] and given in Table 1. A good
modeling is only achieved if all the 22 parameters entering
LMDF (E) are taken free in the fit of ε(E) data. Figure 2
displays also the different contributions corresponding to
this fit and shows the large excitonic part introduced near
E1 and E1 + ∆1. This large excitonic contribution dis-
agrees with the conclusions of the SCP analyses [22]. It
appears more clearly unrealistic if the derivatives of L(E)
and ε(E) are compared. The oscillations in d3Li(E)/dE3

shown in Figure 3 above E1 are due to the excitonic part
and are not present in εi(E) when the amplitude of the
doublet at E1 appears too low. Attempts to obtain a si-
multaneous fit of ε(E) and its two first derivatives have
not been successful as can be guessed by the inspection of
Figure 2 for the different types of fit. The energies of all
critical transitions, which are reported in Table 1, appear
appreciably shifted to higher energies due to the too high
excitonic contribution.

The model of Kim et al. [17] is of the MDF type. How-
ever the broadening of the transitions is introduced before
the integration of their polarizability contributions. The
usual expression of the dielectric response of an isotropic
medium in the Lorentzian approximation is [17].

L(E) = 1− lim
Γ→0

8π2e2

m2

∑
C,V

∫
P 2
CV (E′)JCV (E′)

E′2

×

[
1

E −E′ + iΓ (E′)
−

1

E +E′ + iΓ (E′)

]
dE′

(1)

PCV (E′) is the average of the momentum operator calcu-
lated over the surface of constant energy E′ in the Bril-

Fig. 3. Third derivative of εi(E) for MZT 0.484 versus photon
energy: (◦) deduced from experimental data, (—–) after the
best fit with excitonic contributions.

louin zone. JCV (E′) is the corresponding joint density of
states and m the rest mass of the electron. The assump-
tion of constant PCV (E′) and parabolic bands leads to the
usual expression of L(E) of the SCP model [25] or first
MDF model [12]. Kim et al. [17] interpolate the product
P 2
CV (E′)JCV (E′) = W (E′) between the expressions cor-

responding to the usual and simple description of two crit-
ical transitions. This interpolation uses polynomials noted
pj and qj which multiply the strong variation of the joint
density of states around critical points.

The polynomials take into account the non parabolic-
ity of the bands and the variation of PCV (E′). Following
the interband transitions between critical points whose
name and type are given in Table 2, the expressions of
W (E′) take the forms [17]

W
(E′)
E0→E1

= p1(E′)
√
E′ −E0 − q1(E′)

√
E′ − E0

√
E1 − E′ (2)

W
(E′)
E1→E2

= p2(E′)− q2(E′)
√
E2 − E′ (3)

W
(E′)
E2→Ee

= p3(E′)− q3(E′)
√
E′ − E2 (4)

W
(E′)
E0→E2

= p4(E′)
√
E′ −E0 − q4(E′)

√
E′ − E0

√
E2 − E′ (5)

W
(E′)
E0→E1+∆1

= p5(E′)
√
E′ − E0

− q5(E′)
√
E′ − E0

√
E1 +∆1 − E′ (6)

W
(E′)
E1+∆1→Ee

= p6(E′) (7)

W
(E′)
E0+∆0→Ee

= p7(E′)
√
E′ − (E0 +∆0). (8)

The upper energy Ee is, in fact, self contained in the val-
ues of the coefficients of the corresponding polynomials.
The interpolations given here between critical points fol-
low the transitions between filled and empty bands in the
Brillouin zone and are given in Table 2. They are not com-
pletely the same as those chosen in reference [17], but this
has no consequence on the fit of ε(E) as the interpolation
polynomials are not related to specific features of the band
structure.

The W (E′) given by (2–8) are put in (1), and the
broadening parameter Γ (E′) is, somewhat arbitrarily, in-
terpolated between its values Γi and Γf at the lower (Ei)
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and upper limits (Ef ) of each of the integrals which are
also one of the critical points given in (2–8).

Γ (E′) = γE + β (9)

where γ =
Γf − Γi
Ef −Ei

and β =
EfΓi −EiΓf
Ef −Ei

·

The integrals can thus be performed analytically and L(E)
reads then:

L(E) = 1−
8π~2e2

m2

2∑
n=0

[p1nHn(E)− q1nFn(E)]E0→E1

+ [p2nGn(E)− q2nKn(E)]E1→E2

+ [p3nGn(E)− q3nHn(E)]E2→Ee

+ [p4nHn(E)− q4nFn(E)]E0→E2

+ [p5nHn(E)− q5nFn(E)]E0→E1+∆1

+ [p6nGn(E)]E1+∆1→Ee

+ [p7nHn(E)]E0+∆0→Ee
+ r00.

(10)

Where pin(qin) is the coefficient of (E′)n in pi(E
′)(qi(E

′)).
Fn(E), Gn(E), Hn(E) and Kn(E) are integrals whose
analytic expressions are given in the appendix of refer-
ence [17] and in [26]. Integral limits Ei and Ef are given in
(10) by lower indices at the right of each bracket. The con-
tribution of transitions of energy higher than Ee are sim-
ply expressed through the constant r00. This contribution
has been simulated by a polynomial in [17] which does not
satisfy Kramers-Kronig relations and, better, by an har-
monic oscillator [21]. However the model contains a great
number of fitting parameters, here 47 for a Lorentzian
broadening, and it appears more than enough to gather
the small contribution of transitions above Ee in the con-
stant r00.

The effect of a Gaussian broadening near a critical
point Ej can be fairly well introduced in L(E) replacing
the Lorentzian broadening Γj by

Dj = Γje
αj

(
E′−Ej
Γj

)2

(11)

[17] where αj is an adjustable parameter.
This change in some broadenings improves the fit of

experimental data especially in the vicinity of the funda-
mental gap E0 [17,18].

3 Fitting procedure and results for defined
compositions

The main points of the discussion on the HO and the MDF
model have been already given in Section 2. We want to
emphasize that the simple HO model is adequate, if one
is only interested in the knowledge of the composition in
one of the two ternaries studied, as ε(E) varies strongly
with x. We found that the use of the HO model leads to a
determination of x with an accuracy of 0.7% which is near

the absolute uncertainty on the x determination. A slight
improvement in x is reached when using the SCP model
with the main critical transitions; however it needs more
calculations and more attention in the evaluation of ε(E)
derivatives and their fit to the SCP model as the results
depend on the type of critical transition chosen.

The Kim et al. modeling of ε(E) needs the following
steps: for each individual composition of a ternary where
good experimental data have been obtained, L(E) is fitted
to ε(E) with Lorentzian expressions of the broadenings. A
Gaussian broadening is then introduced and its effect ex-
amined. For a given x, the individual fit is performed in
two steps [17] as all the parameters do not have the same
importance. In a first step, the energies and broadening
parameters of the critical transitions are evaluated. Their
values can be determined independently using the SCP
model. We found that the Ej values deduced from the fit
of the third derivatives of εr(E) and εi(E) with the SCP
model are the same, within ±4 meV as those deduced us-
ing directly the Kim et al. model. The deviations between
both fits are within the uncertainties in the determination
of these energies [22,23]. The deviations on the Γj using
both models have also the same amplitude. This excellent
agreement is found only when the type of critical transi-
tion chosen in the SCP model is the same as that used in
the model of Kim et al. Ej and Γj values so deduced have
been given for about 10 compositions in [22] for MZT and
in [23] for CZT; they are given in Table 3.

In the second step the 37 other parameters enter-
ing (10) are adjusted using the Levenberg-Marquard
method [27] so as to obtain the best fit on ε(E). A global
test of the convergence of the fit is given by the confidence
parameter:

χ2 =
1

N −m

N∑
i=1

{
[εr (Ei)− Lr (Ei)]

2

σ2
r

+
[εi(E)− Li(E)]2

σ2
i

}
(12)

N is the number of photon energies at which ε has been
measured, m the number of parameters to be adjusted,
σ2
r and σ2

i are experimental standard deviations on all the
photon spectrum.

This two step procedure is more tedious to handle,
however the determination of the Ej and Γj which de-
scribe ε(E) variations very near critical transitions with
the SCP model do not interact with those of the coef-
ficients of the interpolation polynomials pin and qin. It
avoids spurious convergences of some pin or qin around
weak transitions such as E0 + ∆0 [21]. In MZT, E0 lies
below the lowest photon energy of the experimental ε(E)
spectrum for x < 0.45: E0 is then deduced from optical
absorption measurements [28] and the p1n and p7n are ad-
justed in a last fit so as to obtain the low frequency dielec-
tric constant deduced from infrared reflectivity data [29].

Good individual fits lead to a great number of pin and
qin equal to zero [18,19,21]. We have not been able to de-
fine mathematical criterions stating what parameters are
of small importance in a fit. However we found obvious
general rules which are of great help during the fitting



568 The European Physical Journal B

Table 3. Energies Ej and broadening parameters Γj of critical transitions for the different compositions x considered in HgZnTe
and CdZnTe as deduced from the SCP fit.

Hg1−xZnxTe

x 0 0.106 0.148 0.216 0.294 0.424 0.484 0.640 0.814 0.920 1

E0 (eV) – – – – – – 0.850 1.256 1.686 2.011 2.273
Γ0 (meV) – – – – – – 58 46 36 17 10
E0 +∆0 (eV) – – 0.798 1.124 1.394 1.544 1.720 2.187 2.584 – 3.193
ΓE0+∆0 (meV) – – 1 2 37 57 47 53 66 – 3
E1 (eV) 2.109 2.216 2.245 2.273 2.399 2.525 2.557 2.820 3.125 3.463 3.632
ΓE1 (meV) 65 85 101 108 114 125 139 126 88 80 68
E1 +∆1 (eV) 2.753 2.862 2.899 2.927 3.063 3.180 3.239 3.499 3.789 4.018 4.226
ΓE1+∆1 (meV) 79 142 144 159 156 186 193 165 160 144 96
E2 (eV) 4.337 4.451 4.445 4.498 4.557 4.632 4.678 4.863 5.014 5.232 5.280
ΓE2 (meV) 371 334 269 245 203 161 165 95 120 180 183

Cd1−xZnxTe

x 0 0.052 0.180 0.260 0.410 0.512 0.616 0.872 1

E0 (eV) 1.518 1.534 1.615 1.66 1.762 1.847 1.922 2.139 2.273
Γ0 (meV) 12 13 12 8 10 12 12 7 10
E0 +∆0 (eV) 2.452 2.471 2.541 2.578 2.72 2.783 2.832 3.094 3.193
ΓE0+∆0 (meV) 37 59 7 51 22 25 43 54 3
E1 (eV) 3.623 3.369 3.383 3.381 3.41 3.433 3.481 3.573 3.632
ΓE1 (meV) 60 73 72 76 79 85 82 73 68
E1 +∆1 (eV) 3.96 3.966 3.98 3.981 4.017 4.053 4.095 4.15 4.226
ΓE1+∆1 (meV) 110 113 115 108 126 128 142 103 96
E2 (eV) 5.04 5.011 4.945 4.986 5.065 5.154 5.201 5.268 5.28
ΓE2 (meV) 197 232 231 204 223 200 202 170 183

Fig. 4. εi(E) of MZT 0.484: (+) experimental data, (—–)
after the individual fit with the model of Kim et al., (�) after
adjustment of the parameters of the composition dependent
model.

procedure. The higher the order of an interpolation poly-
nomial the less easy is the convergence of the fit with
larger deviations between L(E) and ε(E). The influence
of an interpolation polynomial between two critical tran-
sitions decreases when the photon energy goes far from
these transitions. This allows the limiting of the order of
the polynomials to zero for high energy transitions [18]. In
each of the seven brackets of (10), the contribution of the
pjn is important in the lower half interval of integration

Fig. 5. Third derivatives of εr(E) and εi(E): (∇)εr, (◦)εi as
deduced from experimental data, (—–) after the individual fit
with the model of Kim et al.

between Ei and Ef . In return the qjn contributes mainly
in the higher half interval. In fact both pin and qin are
adjusted so as to obtain the smallest difference between
L(E) and ε(E) in the middle of Ef − Ei. Very near a
critical point ε(E) is very well modelled with constant
terms (pio or qio) in agreement with the accuracy of the
SCP model. We have been able to obtain good fits for
each composition in MZT and CZT with only 15 non-
zero parameters with a confidence parameter usually lower
than 1. As an example, ε(E) and L(E) are compared
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in Figure 4 and their third derivatives in Figure 5 for MZT
0.484. They show that such a model is the most accurate
as it describes well the behaviour of ε(E) both around
critical transitions and between these transitions.

The largest deviations of L(E) from ε(E) remain, how-
ever, on εi(E) just below the fundamental gap. A Gaussian
broadening introduced in the three transitions of lowest
energy has not improved the fit in a convincing way. For
the sake of comparison an enlargement of the spectral re-
gion around E0 of the results of the model of Kim et al.
for CdTe is reproduced in Figure 6 with our results. We
see in this figure that the Lorentzian fit of our measured
εr(E) is very good and our Lr(E) variations below E0 are
as good as those given by Kim et al. [18]. In return our
εi(E) variations deduced with the Lorentzian fit are not
the same. If the fit is not very good below E0 it appears
better above the fundamental gap. Fits with a Gaussian
description may improve εi(E) below E0 but to the detri-
ment of the part above the gap and of εr(E) below the
gap. As the Gaussian description adds another adjustable
parameter we prefer to keep the Lorentzian one to start
the last step of the modeling procedure.

4 Composition dependent model
and discussion

The working out of a composition-dependent model needs
to describe the variations, with x, of each of the pa-
rameters of the model. The Ej(x) variations are well re-
produced by second order polynomials as the difference
between their actual value and the linear interpolation
between the value corresponding to the end binaries is al-
most symmetric as referred to x = 0.5 [22]. The Γj must
also have smooth variations with x and are tentatively de-
scribed by second order, but also third order polynomials.
One expects also smooth variations with x for all the other
coefficients of the polynomials entering (10). This global
modeling appears relatively bad despite the high order of
the polynomials used to describe the x variations of these
coefficients. This is even more obvious for the chosen ex-
ample of MZT 0.484. εi(E) is also shown in Figure 4 after
one of the best global fits. The description is clearly rather
bad as compared to the individual fit for this composition.
Table 4 gives the values of the pin and qin obtained for
this composition after the global fit which have to be com-
pared with those obtained after the individual fit of ε(E)
which are given in the next row. Table 4 gives also the or-
der s of the fitting polynomials and the relative deviation
δ on the 15 parameters used for the individual fits. L(E)
appears to be very sensitive to the value of pin and qin. A
relative change of 1% in one of these parameters can lead
to a change of more than 10% in εi(E) between the en-
ergies of the critical transitions where it has the greatest
effect. An analysis of the origin of the failure of a good
global fit shows that it comes mainly from the deviations
of the values of the Γj from a smooth curve describing
their x variations. This can be seen clearly by inspection
of Figure 8 of [22] and Figure 5 of [23]. One way to obtain

a better global fit is obviously to describe Γj(x) variations
with a polynomial of high order. In fact the model is im-
proved with Γj(x) described with polynomials the orders
of which are the same as the number of compositions for
which L(E) has been fitted to ε(E) that is 10 for MZT
and 8 for CZT. However, this type of description does not
rest on any physical ground but try to take into account
the uncertainties arising in the measurements.

The experimental uncertainties on the determinations
of εr(E) and εi(E) are now smaller than 0.5% with ex-
isting ellipsometers. This is seen in the error bars of the
energies of the critical transitions which remain lower than
10−2 [18,22,23]. A systematic error comes from the pres-
ence of an overlayer on the surface of bulk samples af-
ter chemical treatments which give the “best” results [2,
4,22,23]. However, if the overlayer cannot be completely
eliminated, it can be controlled through different tests.
Moreover the final contribution of the overlayer to the
deviations of ε(E) as compared to the actual value can
have only a smooth variation on composition. Depolarisa-
tion effects originating from the roughness of sample sur-
faces lead also to deviations on ε(E) from its actual bulk
value. This roughness is optically equivalent to an over-
layer which must be added to the one previously discussed.
Inspection of the surfaces by atomic force microscopy show
that their roughness remains weak and almost indepen-
dent of x in both ternaries after the best chemical treat-
ments [22,23]. The root mean square roughness increases
slightly from 0.38 nm for CdTe to 0.64 nm for HgTe and
0.65 nm for ZnTe [30]. So the depolarisation effects remain
weak and should vary smoothly with x.

The main origin of the uncertainty in Γj rests on
the elaboration of the bulk materials. The Ej but espe-
cially the Γj change with doping [31,32]. In GaAs [32] the
changes are greater for n-type doping than for p-type dop-
ing and depends on the type of dopant. The problem is not
simple as the effect on the lattice differs from one dopant
to the other. The residual doping of the measured samples
is lower than 1016 cm−3 in CZT and MZT with x > 0.6
and lower than 1017 cm−3 in MZT with x < 0.6. These
limited dopings lead, at most, to Γj increases of 10 meV.
These changes are non-negligible as compared to Γj val-
ues which stay in the 100 meV range. Actually, all the
defects contribute, more or less, to the Ej and Γj changes
and we have no precise knowledge of their concentrations.
Extended defects contribute, in addition, to the lattice po-
larizability and to the Γj . Deviations from stoichiometry
are large in tellurium based II-VI compounds leading to
Te precipitates after low temperature annealings under a
controlled pressure of one of the cation components [33–
35]. Te precipitates have a non-negligible contribution to
the polarizability and also probably to the Γj . It has been
shown [36] that the commonly assumed value of the di-
electric constant, at 10.6 nm of 7.28 for ZnTe [37] can be
lowered to εr = 6.75 after a very long annealing in liquid
Zn. The concentrations of the different defects is difficult
to control and even to measure in bulk semiconductors.
The main part of the erratic deviations of the Γj from
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Fig. 6. Enlargement of the spectral domain near Eo of CdTe: (a) εr(E) and εi(E) reproduced from [18], (M, ◦) εr, (�, ◦) εi
experimental data, (- - -) Lorentzian fit, (—–) Gaussian fit. (b) Our experimental results, (◦) εr, (�) εi, (—–) Lorentzian fit.

Table 4. Value of the coefficients entering (10) after the global fit (GF) to obtain a composition dependent model for MZT
0.484 which are to be compared to their values after the individual fit (IF) on experimental results for this composition; s is
the order of the fitting polynomial and δ the relative deviation on the coefficients.

p1,0 p1,1 q1,0 q1,1 p7,0 p2,0 p2,1 q2,0 q5,0 q5,1 q4,0 p6,0 p3,0 q3,1 r0,0

GF 200 −51 188 −37 −1 239 −4.2 110 89 −4.6 66 23 76 4.7 0.9
IF 202 −52 189 −38 0 239 −3.9 109 89 −1.2 66 20 77 4.4 1.09
s 9 9 9 9 5 9 9 9 8 8 8 7 8 8 7
δ 0.005 0.02 0.005 0.03 0.1 < 10−3 0.08 0.01 < 10−3 0.4 < 10−3 0.15 0.01 0.07 0.2

smooth variations with x originates most probably from
the unknown defect concentrations.

Another origin of erratic deviations in Γj may come
from those of the composition of the samples used to mea-
sure ε(E). Only samples where the estimated x variation
on the tested area was less than 2× 10−3 were measured.
Such spreads in x lead to Γj enlargements with upper
bounds of 3 meV for E0 and E0 + ∆0, and 1 meV for
the other critical transitions in MZT; these are two times
lower in CZT. These Γj increases represent about one
tenth of the erratic deviations found on the Γj of MZT
0.484 already considered here. It appears most likely that
non controlled defects in the bulk samples hinder a good
global modeling of ε(E) in the two II-VI ternaries studied.
There is no comprehensive optical studies of these II-VI
compounds when they are grown by epitaxial techniques.
Some of these techniques allow a good control of purity
and defects during the growth. This appears to be the case

for some III-V alloys grown by molecular beam epitaxy for
which ε(E) data can be well described by the Kim et al.
model in large composition domains [19,21].

5 ε predictions in the infrared and comparisons

Expression (10) allows the evaluation of L(E) at frequen-
cies below the fundamental gap but above the reststrahlen
band due to lattice vibrations. Lr(0) at zero frequency,
calculated with (10) is called the dielectric constant ε∞.
Lr(E) is calculated using the parameters deduced from the
individual fits. The comparison of Lr(0) with ε∞ obtained
on samples of the same source as those used for ellipsomet-
ric measurements [29] is given in Figure 7. These results
are rather far from other experimental results obtained
on bulk MZT grown by another method [38]. The strong
variation of εr(E) in MZT hides the small deviations due
to different defect concentrations in samples of different
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Fig. 7. Infra-red dielectric constant above phonon frequencies
ε∞ versus composition x in HgZnTe. (∇) calculated values
after the fit with the model of Kim et al. on individual compo-
sitions, (◦) from [29], (�) from [38], lines give quadratic fits.

Fig. 8. Infra-red dielectric constant above phonon frequencies
ε∞ versus composition x in CdZnTe. (◦) calculated values after
the fit with the model of Kim et al. on individual compositions,
(�) from [39], (�) from [41], (M) from [42], (•) from [36].

compositions. In return, the deviations of the calculated
Lr(0) from a smooth curve are clearly seen in the case of
CZT as ε∞ has a small variation with x. Figure 8 shows
ε∞ = Lr(0) for compositions where ε(E) have been mea-
sured. Values given in the literature for the end binaries
are also reported. ε∞ values of the ternaries are enclosed
between those given for the binaries, for which the devia-
tions should be attributed mainly to differences in defect
concentrations of the samples rather that uncertainties on
optical measurements. We see that, in the Cd rich side,
where Zn increases the bond strength of CdTe, ε∞ values
are lower than 7.4 [39] which is the commonly considered
value. ε∞ of defect free CdTe is more likely near 7.2 [40]
or 7.1 [41]. Zn rich compounds have ε∞ higher than the
value which can be interpolated between those of CdTe
(7.2) and ZnTe (6.75). Zn rich CZT have probably higher

defects concentrations which are more likely tellurium pre-
cipitates.

6 Conclusion

Among the three models considered for expressing the di-
electric function of semiconductors, that of Kim et al. ap-
pears the most complete and powerful. The analytic in-
terpolation of the product of the density of states and the
matrix element of the transitions between critical tran-
sitions allows the description of ε(E) both near critical
points and between them with a great accuracy. This ε(E)
modeling remains a little heavy and should be used only if
precise ε(E) values are needed. The knowledge of parame-
ters like composition x with an accuracy better than 1% is
reached with simpler models like the harmonic oscillator
one which is purely phenomenological.

In the case of the II-VI compounds considered we have
failed in the elaboration of a precise composition depen-
dent model. The lack of accuracy is not due to the model
itself but rests on the metallurgical definition of the sam-
ples. The low composition inhomogeneity of the samples
contributes but not to a great extent. The main part of
the erratic deviations of the parameters of the model from
a smooth variation with composition appear to originate
from the densities of defects which are difficult to control
during the growth and the following annealing treatments.

V. Drouot is gratefully acknowledged for the reading of the
manuscript.
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